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Abstract
Let ϕ be a Choquet-capacity functional on K = (K1,K2) and each Ki of which Ti is its capacity

functional. Then there exists a unique sub-copula C such that (1) Dom(C) = Ran(T1)×Ran(T2), (2) For all
(K1,K2) ∈ K, C(T1(K1), T2(K2)) = ϕ(K1×K2). In this research, we have the theorems to construction a
unique sub-copula C which we can apply to any other random closed set, for example, random (vertice) graph.

1 Introduction
The standard definition of a copula is a multivariate
distribution function defined on the unit cube [0, 1]n,
with uniformly distributed marginals. This definition
is very natural if one considers how a copula is
derived from a continuous multivariate distribution
function; indeed in this case the copula is simply
the original multivariate distribution function with
transformed univariate margins. Alternatingly, we
denote by DomH and RanH the domain and range
respectively of H . Furthermore, a function f will be
called nondecreasing whenever x ≤ y implies that
f(x) ≤ f(y). A statement about points of a set
S ⊆ Rn, where S is typically the real line or the unit
cube [0, 1]n, is said to hold almost everywhere if the
set of points of S where the statement fails to hold has
Lebesgue measure zero.[B.Nelson;1999]

Definition 1.1. A real function H of n variables is n-
increasing if VH(B) ≥ 0 for all n-boxes B whose
vertices lie in DomH .

Definition 1.2. An n-dimensional copula is a function
C with domain [0, 1]n such that

(1) C is grounded and n-increasing.

(2) C has margins Ck, k = 1, 2, ..., n, which satisfy
Ck(u) = u for all u in [0, 1].

The following theorem is known as Sklar’s Theorem.
It is the most important result regarding copulas, and is
used in essentially all applications of copulas.

Theorem 1.3. Let H be an n-dimensional distribution
function with margins F1, ..., Fn. Then there exists an

n-copula C such that for all x in R̄n,

H(x1, ..., xn) = C(F1(x1), ..., Fn(xn)).

If F1, ..., Fn are all continuous, then C is unique;
otherwise C is uniquely determined on RanF1 × ... ×
RanFn. Conversely, if C is an n-copula and F1, ..., Fn

are distribution functions, then the function H defined
above is an n-dimensional distribution function with
margins F1, ..., Fn.

For the proof, see [Sklar ;1996].
Corollary 1.4. Let H be an n-dimensional distribution
function with continuous margins F1, ..., Fn and copula
C. Then for any u in [0, 1]n,

C(u1, ..., un) = H(F−1(u1), ..., F
−1(un))

Consider the functions Mn, Πn and Wn defined on
[0, 1]n as follows:

Mn(u) = min{u1, ..., un},

Πn(u) = u1...un,

Wn(u) = max{u1 + + un n+ 1, 0}.
The functions Mn and Πn are n-copulas for all n ≥ 2
whereas the function Wn is not a copula for any n ≥ 3

LetX1, ..., Xn be random variables with continuous
distribution functions F1, ..., Fn, respectively, and joint
distribution functionH . Then (X1, ..., Xn) has a unique
copula C, where C is given by Sklar's theorem. The
standard copula representation of the distribution of the
random vector (X1, ..., Xn) then becomes:

H(x1, ..., xn) = P(X1 ≤ x1, ..., Xn ≤ xn)

= C(F1(x1), ..., Fn(xn)).
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Since X1, ..., Xn are independent if and only if
H(x1, ..., xn) = F1(x1)...Fn(xn) for all x1, ..., xn in
R, the result is the following.

Theorem 1.5. Let (X1, ..., Xn) be a vector of
continuous random variables with copula C, then
X1, ..., Xn are independent if and only if C = Πn.

Copulas provide a natural way to study and
measure dependence between random variables.
Copula properties are invariant under strictly increasing
transformations of the underlying random variables.
Linear correlation is most frequently used in practice
as a measure of dependence. However, since
linear correlation is not a copula-based measure of
dependence, it can often be quite misleading and
should not be taken as the canonical dependence
measure. [Paul Embrechts, Filip Lindskog and
Alexander McNeil; 2001]. In this research, copulas
are a tool for modeling and capturing the dependence
of random graphs.

By those three different correlation structures
and the concept of copula, we can generate
the joint distribution function for random variables
Pi1, Pi2, ..., Pin via the fact that the edge probabilities
in our random graphs are all random variables in the
closed interval [0,1]. Yiyi Shi described some idea of
this joint distribution function by the Gaussian copula
as the following:

F (pi1, pi2, ..., pin) = P(Pi1 ≤ pi1, ..., Pin ≤ pin)

= C(pi1, pi2, ...pin) = Hρi(Φ(pi1),Φ(pi2), ...,Φ(pin))

=
1

(2π)n/2

∫
· · ·

∫
exp(−1

2
xTΣ−1x)dx

where Φ−1(x) is the inverse of the standard normal
distribution function Φ(x)

Hρi(x) is the multi-variate standard normal
distribution function with correlation matrix Σ having
entries all ρi's except for diagonals being 1's. But, in his
research did not verify this copula in form of the function
from [0, 1] × [0, 1] → [0, 1]. Moreover, it is observed
by simulations that the correlation effect would cause
a non-Gaussian degree fluctuation, especially when the
correlation is large.[Y. Shi; 2009]

2 Preliminaries
A copula is a multivariate distribution with all univariate
marginal distributions being uniformly distributed on the
unit interval,[0, 1]; hence C is the distribution of a
multivariate uniform random vector. For a bivariate

distribution F with margins F1 and F2, the copula
associated with F is a distribution function C :
[0, 1]2 [0, 1] that satisfies for (x, y) ∈ R,

F (x, y) = C(F1(x), F2(y))

The copula C is uniquely determined on the unit
square whenever F1 and F2 are continuous. The
copula itself characterises the dependence between the
random variables X and Y with marginal distributions
F1 and F2 . Thus the copula representation resolves
the joint distribution into the marginals F1 and F2

and the dependence structure C. When X and Y
are discrete random variables taking values on some
lattice, Ω , the copula, C, is unique provided (x, y) ∈
Ω but not elsewhere; this non-uniqueness is of no
consequence however since the region outside Ω is
not of interest in the discrete case (NELSEN, 2006).
The representation and uniqueness follows essentially
from a multivariate extension to the probability integral
transformation (JOE, 1997).

To define a copula, one should note that for any
arbitrary increasing F1 and F2, if u and v are uniform on
the interval [0, 1], then x = F−1

1 (u) and y = F−1
2 (v)

are distributed according to F1 and F2. The mapping
from u to x and v to y are one-to-one when x, y are
continuous and many-to-one when x, y are discrete.
The multivariate function C on the unit cube [0, 1]2

C(u, v) = F (F−1
1 (u), F−1

2 (v))

is called a copula if it is a continuous distribution
function and each marginal is a uniform distribution
on [0, 1]. It defines a correspondence between the
marginal distributions F1, F2 and the joint distribution
F. Although many types of copulas exist, Gaussian
copulas are a natural choice when moving beyond the
bivariate case.

For any copula, C(u, v) ≤ C(u, 1) = u and
C(u, v) ≤ C(1, v) = v (all 0 ≤ u, v ≤ 1), and
so C(u, v) ≤ (u, v) = M(u, v). The copula
M(u, v) is called the Frechet upper bound and can
be interpreted as the copula with maximum positive
dependence. Furthermore, C(u, v) ≥ max(u +
v 1, 0) = W (u, v)(all 0 ≤ u, v ≤ 1); W (u, v) is
the Frechet lower bound, the copula with maximum
negative dependence. The copula families are
comprehensive: that is, they include the Frechet upper
and lower bounds. Further, the so-called independence
copula, π(u, v) = uv.

It is useful to measure the coverage of a copula
family in terms of a standard measure of dependence,
such as Kendall’s τ , since not all copulas are
comprehensive. Note that because Kendall’s τ is
based on ranks and is therefore invariant to a strictly
increasing transformation of the margins, its properties
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depend only on the copula of the bivariate distribution.
Furthermore τ ∈ [ 1, 1] and τ = 1 for W , τ = +1
for M , and τ = 0 for π (the Frechet lower and upper
bounds, and independence copula).

There are a large number of Archimedian copula
families (NELSEN, 2006). The choice of a copula
family can be guided by the dependence properties
of that family. Some properties are as follows.
Copulas may be reflection symmetry—if specification
of the joint survival function in terms of the copula
gives rise to the same distribution as specification
in terms of the distribution function, then the
copula is reflection symmetric. Copulas may be:
comprehensive or otherwise; extendable to more than
2 dimensions. They may also exhibit: varying degrees
of upper and lower tail dependence; only negative
or positive dependence structure. Copula families
may be specified by more than one parameter in
order to model dependence structure in more detail.
NELSEN (2006) and JOE (1997) discuss a number
of Archimedian copulas generated by multi-parameter
Laplace transform families.

3 Main result
3.1 Sklar Theorem of Probability

Measures on Product Spaces
Throughout this section, let Ω = Ω1⊗Ω2, A = A1 A2

and U = U1 U2.
By Scarsini’s technical report on copula of

probability measures on product spaces (1989), for
(Ω,A, µ) being a probability space of a product Ω =
Ω1⊗Ω2 and A = A1⊗A2 , we first assume Ai , for all
i, being increasing classes of subsets of Ωi containing
∅ and Ωi.

A class A of subsets of Ω is an increasing class if
it is linearly ordered by set inclusion:

∀A,B ∈ A, either A ⊂ B,B ⊂ AorA = B

Moreover,

P (Ω1 ×A2) = P2(A2), ∀A2 ∈ A2

P (A1 × Ω2) = P1(A1), ∀A1 ∈ A1

such that P1 and P2 be probability measure on Ω1 and
Ω2 respectively.

In this paper, there are two relations on Ω =
Ω1 ⊗ Ω2 defined for elements of each Ωi and denoted
by ≺Ai and ∼Ai which are symmetric complement of

each other. The relations are defined as follow:
For i = 1, 2 any x, y ∈ Ωi:
x ≺Ai y iff ∃A ∈ Ai, [x ∈ A ⇒ y /∈ A]

x ∼Ai y iff ∀A ∈ Ai, [x ∈ A ⇐⇒ y ∈ A]

By the definition, we have that ≺Ai , simply ≺, is
a weak order and ∼Ai , simply ∼ is an equivalence
relation. Let x ! y if either x ≺ y or x ∼ y.

By Scarsini relating to Sklar’s theorem, we apply to
bivariate case as follow.
Theorem 3.1. There exists an unique subcopula C̃A×B

µ

defined on P1(A1) × P2(A2) such that for all Ai ∈
Ai, i = 1, 2

µ(A1 ×A2) = C̃A×B
µ (P1(A1)× P2(A2))

Any subcopula can be extended to a copula in
more than one way. In order to generate an unique
copula, it is obvious that nonatomicity of Pi for all i is
necessary. The hypothesis that P1(A1) = P2(A2) = I
for i = 1, 2 is a sufficient condition but not necessary
to be nonatomic. According to Scarsini, even with
this condition, we will not be able to obtain a result
analogous to general properties of copula in case of
distribution function on R2 which are provided by the
following theorems.

Theorem 3.2. For i = 1, 2, let Pi(Ai) = I . Let Yi

be a polish space weakly ordered by ≺, and Bi is
an increasing family of subsets of Yi. Let Yi be the
Borel σ-field of subsets of Yi. Let fi : Xi Yi be a
strongly monotone bijection with respect to ≺Ai ,≺Bi .
Consider the space (Y1 × Y2,Y1 ⊗ Y2, µf 1), where
f(x1, x2) = (f1(x1), f2(x2)). Then CA

µ = CB
µf−1 , by

A = A1 ⊗A2 and B = B1 ⊗ B2.

3.2 Capacity Functional
In the sense of real problems, a σ-field A of a random
set X might not in the form of an increasing set.

Note that distribution functions, as set functions, are
not additive in general. In fact,

P (X ⊆ A) + P (X ∩Ac ̸= ∅) = 1, ∀A ⊆ U

Many applications require the use of set function
that are not finitely additive, for instance, the
characteristic function, which is monotone but not
additive. The integration which is performed with
respect to nonadditive probability instead of a Riemann
or Lebesque integral is of Choquet. The main objective
of Scarsini’s notes on Distributions with Fixed Marginals
and related topics (1996) is to study some properties
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of capacities on a finite dimensional space. Scarsini
examined the possibility of extending the concept of
copula to more general situation of measure after
defining the distribution function of a capacity. He
used the assumption of convexity of a capacity to
establish the existence of a function that links the
multivariate distribution functions to its marginals called
a generalized copula of the capacity. Moreover, this
copula with d-monotone property has all the usual
properties of a copula. Unlike the case of a σ-additive
case, it is not necessary to know the value of a
capacity on the whole Borel class, but only on a suitable
subclass.
The definition of capacity in this paper differ from the
original definition from Choquet(1953).

By the dual concept of a probability law of a
probability space , we define T : 2U I by;

T (A) = P (X ∩A ̸= ∅) = P (ω : X(ω) ∈ A)

A set function T : 2U I is a capacity functional of
some random sets if it satisfies

(α) T (∅) = 0 and T (U) = 1,
(β) For any k ≥ 2 and A1, A2, ..., Ak ∈ 2U ,

T (
k⋂

j=1

Aj) ≤
∑

∅̸=I⊆1,2,...,k

(−1)|I|+1T (
⋃

i∈I

Ai)

This also gives the definition of a dual T̃ (A) of a
capacity T defined as T̃ = 1 T (Ac) and T̃ is also a
capacity function.

A capacity function T is then called 2-monotone;
i.e., ∀A,B ⊆ U

T (A) + T (B) ≤ T (A ∩B) + T (A ∪B)

We see that, by the definition, T is then convex. But,
2-monotonicity implies monotonicity in each argument
only if T is grounded, satisfying the boundary condition.

3.2.1 Capacity Functional for RandomClosed sets
If we consider random sets taking values in a discrete
subset D of 2U , then their probability laws are
determined by their density f on D, i.e., ∀A ⊆ 2U ,

P (X ∈ A) =
∑

A∈D∩A
f(A)

such that f(A) = P (S = A) =∑
B⊆A(−1)|A\B|F (B)
If we view a finite set U as a topological space with

its discrete topology, then a finite random set X is a

random closed set, and its probability law on the σ-field
of 2U is uniquely determined by its capacity functional.
So, a capacity T characterizes a probability measure
Q on 2U via T (A) = Q(FA).

More specifically, there exist a space (Ω,A, P ), for
a random element S : Ω 2U , such that, for all A ⊆ U ,

P (S ∩A ̸= ∅) = PS(FA) = Q(FA) = T (A)

The space (F ,B(F)) of closed subsets of U and
its Borel σ-field with the hit-or-miss topology turns out
to be a metric space; compact, Hausdorff and second
countable. Moreover, probability measure on their
Borel σ-field are determined by their values on compact
sets. For instance, if we let (F ,B(F)) being the
space of closed subsets of Rd and S : (Ω,A, P ) →
(F(Rd),B(F)) being a random closed set on Rd, the
probability law on S is PS on B(F) where PS = PS 1.
The definition of T for S is the following.

Definition 3.3. A set function T : K I is a capacity
functional if it satisfies:

CF1 0 ≤ T ≤ 1 and T (∅) = 0.

CF2 T is alternating of infinite order,i.e, for any n ≥ 2

and K1,K2, ...,Kn ∈ K,

T (
n⋂

j=1

Kj) ≤
∑

∅̸=I⊆{1,2,...,n}

(−1)|I|+1T (
⋃

i∈I

Ki)

CF3 If Kn ↘ K, then T (Kn) ↘ T (K).
For random closed sets S on Rd, we can consider

T as

T (K) = P (S ∩K ̸= ∅) = P (FK)

It turns out that T can characterize the probability
measure on (F ,B(F)) as the counterpart of Lebesgue-
Stieltjes theorem as the following.

Theorem 3.4 (Choquet Theorem). If T : K → I

is a capacity functional, then there exists a unique
probability measure P on B(F) such that for allK ∈ K,

P (FK) = T (K)

3.3 Distributions of Random Sets
Let S be a random set of a probability space
(ω,A, P )which takes value on F being a class of
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closed subsets of U , that is a map S : Ω → F defined
by
S−(K) = {ω ∈ Ω : S(ω) ∩K ̸= ∅} = S 1(FK) ∈ A

for all K ∈ B(F). The so-called Effros-σ-algebra
B(F) is generated by FKK∈K, which KK =
F ∈ F : F ∩K ̸= ∅, and is the Borel-σ-field with
respect to the fell topology. In addition, the distribution
functions of S is then the image measure PS of P on
B(F).

3.3.1 Joint Distributions of Random Sets
Let S = (S1, S2) be a random set of a probability space
(Ω,A, P ) ,whichΩ = Ω1⊗Ω2,A = A1×A2 and takes
value on closed subsets of U = U1 × U2. H is a joint
distribution function of random sets (S1, S2) such that
H : 2U I defined by

H(A1, A2) = P (S1 ⊆ A1, S2 ⊆ A2)

= P ({ω = (ω1,ω2) : S1(ω1) ⊆ A1, S2(ω2) ⊆ A2})

which satisfies all conditions of joint distribution
functions of random sets which are grounded, marginal
and 2-monotone.

From the one dimensional case, the product-Effros-
σ-field B(F1 × F2) generated by FK1 × FK2 can
be inferred where Ki ∈ Ki. Their joint probability
distribution is then given by P ({(ω1,ω2) : S1(ω1) ×
S2(ω2) ∩ K1 × K2 ̸= ∅}) = P (S1 (K1) ∩
S2 (K2)). From now on, a set function satisfying the
following conditions shall be called multivariate capacity
functional.

Definition 3.5. Let ϕ : K1 × K2 I satisfying the
following conditions:

( ) ϕ(∅ ×K2) = 0 and ϕ(K1 × ∅) = 0

( ) For all j = 1, 2 and K = (K1,K2), Kj =

(Kj
1 ,K

j
2) ∈ K, it holds that

∆2ϕ(K;K1,K2) ≥ 0

where ∆0ϕ(K) = 1 ϕ(K1 × K2),
∆2ϕ(K;K1,K2) = ∆1ϕ(K;K1) ∆1ϕ(K ∪
K2;K1).

( ) For all decreasing sequences {Kk
i }∞k=1 ⊆ Ki

for i = 1, 2, it holds that ϕ(Kk
1 × Kk

2 ) ↘
ϕ(K1 ×K2) where Ki =

⋂∞
k=1 K

k
i .

Then, ϕ is a bivariate capacity functional of
(S1, S2).

Theorem 3.6. ϕ defined by ϕ(K1 × K2) =

PS1×S2(FK1 × FK2) is the (bivariate) capacity
functional of S = (S1, S2).

3.4 Copulas for Random Closed Sets
An emerging literature with in this report, the idea was
developed as the following.

For each i = 1, 2, let Si be a random set taking
value on closed subsets of Ui of a probability space
(Ωi,Ai, Pi). For i = 1, 2, Ai is a σ-field which is a
subclass of the power set of 2Ui and Fi is a distribution
function in each Si.

By applying the idea from Scarsini, the following
lemma has been developed.

Lemma 3.7. Let Ai, Bi ∈ Ki for i =

1, 2, ..., d. If ϕ is d-monotone, then C defined as
C(T1(K1), ..., Td(Kd)) = ϕ(×d

i=1Ki) is n-increasing
for all n ≤ d.

Proof. Without any lost of generality, we will prove
that C is increasing in the first n dimensions. Let
Cj = B1 ×B2 × ...×Aj × ...×Bd and let E1, ..., En

be disjoint sets in ×d
i=1Ki such that

n⋃

j=1

Ej = ×n
j=1(Bj \Aj)×d

j=n+1 Bj

Define Di = Ci ∪ Ei for i = 1, ..., n.
Then, Di ∩Dj = Ci ∩ Cj and ⋃n

j=1 Dj = ×d
j=1Bj .

Since ϕ is d-monotone,

ϕ(
n⋃

j=1

Dj) ≥
∑

∅̸=I⊆1,...,n

(−1)|I|+1ϕ(
⋂

i∈I

Di)

=
∑

∅̸=I⊆1,...,n

(−1)|I|+1ϕ(
⋂

i∈I

Ci)

Thus,

ϕ(×d
j=1Bj) ≥

∑

Wj=Aj ,Bj ;j=1,...,n

(−1) (Wj=Aj)+1ϕ(×d
j=1Wj)

So,

ϕ(×d
j=1Bj)+

∑

Wj=Aj ,Bj ;j=1,...,n

(−1) (Wj=Aj)ϕ(×d
j=1Wj) ≥ 0
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We have that

0 ≤ (−1) (Wj=Aj ;j=1,...,n)C(T1(W1), ..., Tn(Wn),

, Tn+1(Bn+1), ..., Td(Bd))

= (−1) (wj=uj)C(w1, ..., wn, vn+1, ..., vd)

It means that C is n-increasing.
Theorem 3.8. Let ϕ be a Choquet-capacity functional
on K = (K1,K2) and each Ki of which Ti is its
capacity functional. Then there exists a unique sub-
copula C such that

(1) Dom(C) = Ran(T1)×Ran(T2),
(2) For all (K1,K2) ∈ K,

C(T1(K1), T2(K2)) = ϕ(K1 ×K2)

Proof. 1) C is well-defined.
Since Ti(∅) = 0 and P (F) = P (F∅) = 1 P (F∅) =

1 Ti(∅)1, we have 0, 1 ∈ RanTi.
Let αi,βi ∈ RanTi and αi = βi for i = 1, 2.

There exist Ai, Bi ∈ Ki such that Ti(Ai) = αi and
βi = Ti(Bi). Then, for i = 1, 2,

Ti(Ai) = Ti(Bi)

|ϕ(B1 ×B2) ϕ(A1 ×A2)|

≤ |T1(B1) T1(A1)|+ |T2(B2) T2(A2)| = 0

Then, ϕ(B1 ×B2) = ϕ(A1 ×A2).

C(T1(A1), T2(A2)) = C(T1(B1), T2(B2))

Thus, C(α1,α2) = C(β1,β2).

2) C is grounded.
suppose T1(K1) = 0, that is

P ((ω1,ω2) : S1(ω1) ∩K1 ̸= ∅) = 0

. Thus, C(T1(K1), T2(K2))

= ϕ(K1 ×K2)

= PS(FK1 × FK2)

= P ((ω1,ω2) : S1(ω1) ∩K1 ̸= ∅, S2(ω) ∩K2 ̸= ∅)
= 0

Also, C(T1(K1), T2(K2)) = 0 for T2(K2) = 0.
Thus, C(0, u2) = 0 and C(u1, 0) = 0.

3) C is marginal.
Since Si is a random closed set taking value on
non-empty closed subsets of Ui,wehave Ti(Ui) =

P (ωi : Si(ω) ∩ Ui ̸= ∅) = 1.
C(T1(U1), T2(K2))

= ϕ(U1 ×K2)

= P ((ω1,ω2) : S1(ω) ∩ U1 ̸= ∅, S2(ω) ∩K2 ̸= ∅)
= P (ω2 : S2(ω) ∩K2 ̸= ∅)
= T2(K2)

Also,C(T1(K1), T2(K2)) = T1(K1) for T2(K2) = 1.
Thus, C(1, u2) = u2 and C(u1, 1) = u1.

4) C is 2-increasing.
Let Ai, Bi ∈ Ki. By the previous lemma, C is

n-increasing since ϕ is 2- monotone, for n = 1, 2.

3.5 Quasi-inverses of Distribution
Functions

Definition 3.9. For generating sets FK of B(F) in one
dimension, let T : K → I such that T (K) = PS(FK).
Then, the quasi-inverse T 1 with domain I is defined
by

(1) if t ∈ Ran(T ), then there is K = T 1(t) ∈ K

such that
T (T 1(t)) = t

(2) if t /∈ Ran(T ), then

T 1(t) =
⋂

Kα∈K,P (FK)≥t

Kα

Theorem 3.10. Let ϕ, T1, T2 be as in the above
theorem. Then, for any u1, u2 ∈ [0, 1], there exists
a sub-copula C such that,

C(u1, u2) = ϕ(T 1
1 (u1)× T 1

2 (u2))

C is uniquely determined on Ran(T1)×Ran(T2).

4 Conclusion
In this research, we have the theorems to construction
a unique sub-copula C which we can apply to any other
random closed set, for example, random (vertice) graph.
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Lemma 4.1. Let Ai, Bi ∈ Ki for i =

1, 2, ..., d. If ϕ is d-monotone, then C defined as
C(T1(K1), ..., Td(Kd)) = ϕ(×d

i=1Ki) is n-increasing
for all n ≤ d.

Theorem 4.2. Let ϕ be a Choquet-capacity functional
on K = (K1,K2) and each Ki of which Ti is its
capacity functional. Then there exists a unique sub-
copula C such that

(1) Dom(C) = Ran(T1)×Ran(T2),

(2) For all (K1,K2) ∈ K,

C(T1(K1), T2(K2)) = ϕ(K1 ×K2)
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