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a b s t r a c t

Surface carbon dioxide concentrations were measured using a non-dispersive infrared carbon dioxide
sensor at Lampang Rajabhat University from April to May 2013 and at the University of the Philippines-
Diliman campus starting September 2013. Factors influencing the variations in these measurements were
determined using multiple linear regression and a Lagrangian transport model. Air temperature and sea
level pressure were the dominant meteorological factors that affect the CO2 variations. However, these
factors are not enough. Surface CO2 flux and transboundary transport needs to be considered as well.

© 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Global temperature is rising. This is a known fact. The Inter-
governmental Panel on Climate Change (IPCC) have proven this
time and again in their previous assessment reports as well as in
their newest report released in 2013. Together with this tempera-
ture increase comes sea-level rise. In IPCC's 2013 report, four sce-
narios of carbon emissions were presented. These were termed as
Representative Concentration Pathways (RCPs) that drive the
temperature and sea-level scenarios. According to these RCPs,
temperatures will rise by as much as 2 �C if we stop carbon emis-
sions by 2020 and will increase by 4 �C for business as usual carbon
emissions by 2100. This translates to a sea-level rise increase of
approximately 0.5 m and 1.0 m, respectively (IPCC et al., 2012). This
makes communities in Southeast Asia, particularly cities such as Ho
Chi Minh, Jakarta, Bangkok, Manila and Yangon, more vulnerable
(Potsdam Institute of Climate Research and Climate Analytics
gay).
(2013)). Since almost half of the anthropogenic carbon emissions
remain in the atmosphere, continuous measurements of atmo-
spheric carbon dioxide (CO2) concentrations are therefore essential.

Information about carbon dioxide concentrations spans
different scales and platforms. One can look at the global scale
using satellites (e.g. SCIAMACHY, GOSAT) and models (e.g. TM3,
CarbonTracker). Regionally, ground-based stations (e.g. TCCON)
and nested regional models (e.g. CarbonTraker Asia, STILT) are
available. At local scale, in situ measurements can be utilized.
However, these platforms are relatively expensive for developing
countries such as the Philippines and Thailand. Inexpensive
monitoring solutions are therefore essential. Non-dispersive
infrared (NDIR) sensors have the potential to provide this inex-
pensive solution for carbon dioxide concentration monitoring.

Carbon, being one of the basic elements of life, is always on the
move, shifting between the atmosphere, the oceans, and the land.
Even as plant growth takes large amounts of carbon dioxide out of
the air, land-use changes, such as the widespread conversion of
forests toagriculturalfields add carbon to the atmosphere. Processes
in the ocean, including shell formation by marine crustaceans, soak
up huge amounts of carbon. Meanwhile, slow geologic processes,
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Fig. 1. Surface CO2 concentration time-series measured at LPRU, Thailand (top) and IESM, Philippines (bottom).

Table 1
List of independent variables, xik, input to the multiple linear regression for the LPRU
and IESM sites.

Independent variables LPRU IESM

xi1 Air Temperature [
�
C] Air Temperature [

�
C]

xi2 Sea Level Pressure [hPa] Sea Level Pressure [hPa]
xi3 Relative Humidity [%] Relative Humidity [%]
xi4 Wind Speed [km/h]
xi5 Precipitation [mm]
xi6 Wind Direction [O from N]
xi7 Wind Gusts [km/h]
xi8 Wind Gust Direction [O from N]

Table 2
List of regression coefficients, bk, calculated from the multiple linear regression for
the LPRU and IESM sites. Also indicated is the RMS for each site. Bold and italicized
are the top-two (in terms of absolute magnitudes and b0 excluded) regression co-
efficients for LPRU and IESM.

Regression
coefficients

LPRU (RMS ¼ ±16.9477 ppm) IESM (RMS ¼ ±19.0691 ppm)

b0 �1040.8 �2185.1
b1 �1.9576 �4.6680
b2 1.5492 2.6697
b3 �0.1434 0.7399
b4 �0.3061
b5 �0.0774
b6 �0.0111
b7 �0.7443
b8 �0.0086
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like coal or natural gas formation, sequester large amounts of carbon
underground. However, mankind has learned how to harness this
fossil fuel, releasing a large amount of carbon into the atmosphere.
Only about 40% of the carbon that we are emitting stays in the at-
mosphere, and the remaining 60% are being taken up by theworld's
oceans and land plants. We don't really know where on land this
carbon is being taken up. Computer models for a long time have
indicated that a large amount of CO2 is coming out of the tropics
possibly as a result of deforestation and a large amount is being
taken up in the northern forests in the U.S., in Europe, in Canada and
Russia. However, researchers on the ground looking for that carbon
in the north were not able to find it. This is sometimes referred to as
themissing carbon sink. It has been found that more CO2 is taken up
by tropical forests thanwhat was previously thought and less CO2 is
being taken up by northern forests (Stephens et al., 2007). This
stresses the importance of carbon dioxidemeasurements in tropical
regions for understanding carbon source/sink processes (tropical
rainforest deforestation, tropical reservoir out gassing, etc.).

There is a lot of uncertainty in carbon emissions in the tropics.
Monitoring surface CO2 concentrations in this region is therefore
essential. However, most countries in the tropics are poor or
developingnations. This limits capabilities of extensive atmospheric
carbon dioxide measurements in this region. Low-cost solutions for
CO2 monitoring are needed. NDIR sensors offer the solution for
moderate accuracywith inexpensive carbondioxidemeasurements.
The Berkeley Atmospheric CO2 Observation Network, or BEACO2N,
has proven that “instead of using a small number of extremely sensitive
instruments tomeasure a large area, interesting locations are blanketed
with a high density network of moderate quality instruments, that
when taken together as a network produce an accurate, highly resolved
picture of real-time CO2 concentrations” (http://beacon.berkeley.edu/
). In this light, this study aimed at determining the factors influ-
encing surface CO2 concentrations using a single low-cost and
moderate accuracy NDIR sensor in synergy with multiple linear
regression and a Lagrangian transport model.

2. Methodology

A low-cost, moderate accuracy NDIR sensor was used in this
study. It works using a diffusion sampling method with a 20 s
diffusion time. The overall precision of the sensor is ±1 ppm and it
is calibrated with a 400 ppm CO2 tank. The operating temperature
of the sensor is from 0 to 50

�
C and an operating relative humidity
of 0e96%. Additionally, since it is being operated in the tropics, an
additional hydrophobic filter was installed. Sampling time may be
varied with a minimum of one sample every 2 s.

Surface CO2 measurements using the NDIR sensor were carried
out at Lampang Rajabhat University (LPRU) (18� 130 59.4700 N, 99�

290 10.24” E, 12 m agl, UTCþ7), which is a suburban site in Lampang
province in Northern Thailand, and at the Institute of Environ-
mental Science and Meteorology (IESM), University of the
Philippines, Diliman campus, Quezon City (14� 380 56.7600 N, 121� 40

16.3200 E, 12 m agl, UTCþ8), which is a highly urbanized site. Sur-
rounding LPRU are numerous rice fields and agricultural land. The
measurements at LPRU were performed from April 19 e July 12,
2013 (with April being the peak of biomass burning in the region)
as part of a pilot study. Meanwhile, the measurements at IESM are
routinely performed starting from September 16, 2013. In this

http://beacon.berkeley.edu/


Fig. 2. LPRU Surface CO2 concentration data and fit (yi) as a function of the top-two highest regression coefficients in terms of absolute magnitudes (air temperature and sea level
pressure).
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paper, only up to January 1, 2014 5 AM local time would be pre-
sented for the IESM site. The measurements at LPRU were collected
every 1-min then averaged to every hour while the data from IESM
weremeasured at 5-min sampling intervals averaged to 3-hourly to
match the meteorological data from the local synoptic stations at
LPRU and IESM, respectively.
2.1. Meteorological factors

The local meteorological data utilized in the study came from
the Thai Meteorological Department (TMD) situated at the Lamp-
ang airport (18� 160 15.3600 N, 99� 300 1500 E) for the LPRU site, and
from the Philippine Atmospheric and Geophysical and
Fig. 3. IESM Surface CO2 concentration data and fit (yi) as a function of the top-two highest
pressure).
Astronomical Services Administration (PAGASA) located at the
Science Garden in Quezon City (14� 380 3900 N, 121� 20 3900 E) for the
IESM site. In order to determine the contribution of the available
meteorological parameters to the measured surface CO2 concen-
trations, multiple linear regression was performed.

Multiple linear regression entails relating the dependent vari-
able, yi, to two or more independent variables, xik. For k indepen-
dent variables, its form is given by equation (1)

yi ¼ b0 þ b1xi1 þ b2xi2 þ…þ bkxik þ ei; i ¼ 1; 2;…; n: (1)

bk are called the regression coefficients or least squares esti-
mator, and ei are the errors. In matrix form, equation (1) simplifies
to
regression coefficients in terms of absolute magnitudes (air temperature and sea level



Fig. 4. Diurnal surface CO2 concentration and air temperature variations during representative dates at the LPRU and IESM sites.
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Y ¼ Xbþ 3 (2)

or explicitly
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An important requirement of multiple linear regression is that
xik's are linearly independent. This can be checked by calculating
(XTX)�1 if it exists. The least squares estimators can then be calcu-
lated using

bb ¼
�
XTX

��1
XTY: (4)

From the regression coefficients, the contribution of each
meteorological parameter available can be assessed. The root-
mean-square error (RMS) of Y from the data Ydata was also calcu-
lated as ameasure of howwell themultiple linear regressionmodel
mimics the measured data. This is given by
Fig. 5. Effect on the day-to-day variations of surface carbon dioxide concentration amplitude
IESM (lower panel) sites.
RMS ¼
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n

vuut
: (5)

2.2. Surface influences (footprints)

Meteorological factors are not the only ones that affect the
surface CO2 concentrations. Depending upon the location of a site,
other factors may come into play. One such factor is the surface CO2
fluxes that maybe transported to the site. For this factor, the Sto-
chastice Time-Inverted Lagrangian Transport (STILT) model (driven
by the meteorological fields of the Global Data Assimilation System
model) was utilized in this study to infer regions that influence the
measurements. This is performed by releasing hypothetical parti-
cles backward in time (backtrajectory) from the measurement
location (receptor). After the specified backtrajectory time (3-h at
~1.84 � 2.78 km and 3-days at dynamic horizontal resolution with
the smallest horizontal resolution being ~18.4� 27.8 km horizontal
resolution in this study), the particles would land at a volume
(specified by zbottom and ztop). A volume that receives more
s due to the passage of a high and low pressure systems at the LPRU (upper panel) and



Fig. 6. Sea level pressure fields (provided by NCEP Reanalysis, NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their Web site at http://www.esrl.noaa.gov/psd/; Kalnay and Kanamitsu, 1996) as typhoon Usagi (Odette) traverses
regions around the Philippines.
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Fig. 7. 3-h backtrajectory footprints for LPRU, Thailand for April, May, June and July 2013. The red circle is Mae Mo coal fired power plant producing 13,606,000 MWh of output
energy, emitting 1240 kg of CO2 per MWh for a total of 16,924,000 tons of CO2 emissions for the year 2009 (data from CARMA, www.carma.org). Also overlaid as stars are fire
hotspots from the Moderate Resolution Imaging Spectroradiometer or MODIS. Green stars indicate 0e30% confidence, yellow stars depict 30e80% confidence and red stars show
80e100% confidence. The number of hourly data for April is N ¼ 180, for May is N ¼ 396, for June is N ¼ 470 while for July is N ¼ 270. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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particles, has a greater influence compared to other volumes. The
volume can also be made into a surface by setting zbottom ¼ ztop
resulting to surface influences or footprints, f(xi,yj,tm) in units of ppm
mmol�1 m2 s (Gerbig et al., 2003; Lin et al., 2003). The footprints
relate surface fluxes, F(xi,yj,tm) (in units of mmolm�2 s�1) to changes
in concentration, Dc(tm) ¼ c(tm) � co(tm) (in ppm), at the receptor,
where co(tm) is the background concentration.

3. Results

Fig. 1 shows the time-series of the surface CO2 concentrations
measured at LPRU and IESM. The gaps in the data indicate periods
when power outages occurred due to weather such as intense
thunderstorms or due to electrical problems of the facilities. The
length of the time gaps depended upon the availability of the
operator to restart the sensor.

Table 1 shows the available independent meteorological vari-
ables that were utilized in the multiple linear regression for the
LPRU and IESM sites. Due to the availability of data, 8
meteorological parameters were used for LPRU and 3 meteoro-
logical fields for IESM.

Indicated in Table 2 are the regression coefficients that were
determined in the multiple linear regression for the LPRU and IESM
sites.

Figs. 2 and 3 depict scatter plots of the LPRU and IESM surface
CO2 concentration data as a function of the top-two highest
regression coefficients of the multiple linear regression in terms of
absolute magnitudes (air temperature and sea level pressure for
LPRU and IESM), respectively. Also plotted are the fits, yi, and its
time-series calculated from the multiple linear regression.

4. Discussion

4.1. Diurnal variations

Without considering b0, the dominant regression coefficient,
b1, that is associated with the air temperature independent var-
iable, xi1 (see Tables 1 and 2). During typical atmospheric

http://www.carma.org
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pressure conditions, air temperature peaks during the afternoon.
The daily maximum temperature generally lags the peak in solar
radiation, which normally occurs at noon in the tropics, due to
the fact that the heated surface still needs to warm the sur-
rounding atmosphere. Surface warming due to the sun causes
thermal plumes to ascend and with it moisture, heat, aerosols
and trace gases such as carbon dioxide. This produces strong
convection generating intense turbulence, hence deep planetary
boundary layer (PBL) mixing. Together with photosynthesis, this
produces a minimum in the surface CO2 concentrations. This is
depicted in Fig. 4 for the LPRU and IESM sites. When the sun goes
down, solar heating ceases and radiative cooling and surface
friction stabilize the lowermost portions of the planetary
boundary layer. This results in weak convection producing
shallow planetary boundary layer mixing. Hand-in-hand with
soil respiration, this causes the maximum in surface carbon di-
oxide concentration values.
Fig. 8. 3-h backtrajectory footprints for IESM, Philippines for September, October, November
Sucat; 3 e Malaya; 4 e Navotas Barge; 5 e Navotas; 6 e Santa Rita Batangas; 7. San Lorenzo
intensity in kilograms of CO2 per MWh (blue: 150e400; yellow: 400e650; Orange: 650e900
org). Other potential CO2 sources are also indicated in the figure (e.g. Angat, Ipo and La M
number of 3-hourly data for September is N ¼ 95, for October is N ¼ 244, for November is N
this figure legend, the reader is referred to the web version of this article.)
In the case of passages of high pressure systems, this causes a
shallower boundary layer due to subsidence and divergence of air
parcels. During low pressure conditions, the PBL structure is not that
straightforward. Air masses converge in relation to updrafts that are
produced. This results in largevariationof theboundary layerheights.
This gives rise to day-to-day variations of surface CO2 concentrations.

4.2. Day-to-day variations

As mentioned in the section above, passages of weather systems
bring about day-to-day variations in surface carbon dioxide con-
centrations. This is exemplified by comparing the amplitudes of the
surface CO2 values from June 18e30, 2013 for the LPRU site and
from September 16e24, 2013 for the IESM site with the measured
sea level pressure as shown in Fig. 5.

For the LPRU site, low pressures of approximately 975 hPa
caused low amplitudes of surface CO2 concentrations during the
and December 2013. The circles are power plants around IESM (1 e Calumpit Mill; 2 e

FGP). The size of the circle depends on the output energy while the color indicates the
; red: >900). The power plant data is for the year 2009 (data from CARMA, www.carma.
esa dams, Payatas and Smokey Mountain landfills and San Pablo volcanic fields. The
¼ 239 while for December is N ¼ 248. (For interpretation of the references to colour in

http://www.carma.org
http://www.carma.org


Fig. 9. 3-day backtrajectory footprints for LPRU, Thailand for April, May, June and July 2013.
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period of June 18e22, 2013. From June 23e25, 2013, the sea level
pressure increased up to 982.5 hPa accompanied by an increase in
the surface CO2 concentration amplitudes. After this period, the sea
level pressure decreased to 980 hPa followed by a decrease in
surface carbon dioxide concentration amplitudes, but not as low as
from June 18e22, 2013.

For the IESM site, the outer bands of a Category 5 typhoon,
internationally named Usagi (locally named Odette), passed by the
IESM site as shown in Fig. 6. With the lowest pressure of the
typhoon at 910 hPa, the passage of Usagi essentially took away the
diurnal cycle of surface CO2 concentrations from September 20e23,
2013.

The independent variable of sea level pressure, xi2, is also
associated with the second dominant regression coefficient, b2, for
the LPRU and IESM sites (see Tables 1 and 2).

Other factors, such as the transport of surface CO2 fluxes to the
measurement site, also affect the day-to-day variations in surface
carbon dioxide concentrations. These are not considered in the
multiple linear regression, hence the RMS errors reported (see
Table 2 and Figs. 2 and 3). Using the STILT model, 3-h backtrajectory
footprints were simulated for each measurement (hourly for LPRU
and 3-hourly for IESM) then averaged over a month to infer regions
thatmay influence themeasurements. A fixed horizontal resolution
of ~1.84 � 2.78 km was utilized for the 3-h backtrajectory foot-
prints. Since the range of the footprints cover more than an order of
magnitude, its logarithm was calculated. This is shown in Figs. 7
and 8 for the LPRU and the IESM sites, respectively. Red contour
colors represent regions with high influence to the measurements
while blue contour colors represent regions with low influence to
the measurements.

Transboundary transport was also examined using 3-day back-
trajectory footprints simulated at a dynamic horizontal resolution
(for efficient computation) with the smallest horizontal resolution
being ~18.4 � 27.8 km. These are shown in Figs. 9 and 10 for LPRU
and IESM, respectively.

During the measurement period at LPRU, the winds generally
come from the southwest. CO2 sources upwind of themeasurement
site, such as biomass burning during April, may influence the
measurements. In Fig. 7, MODIS fire hotspot data, which are based
on brightness temperature, have been overlaid with the footprints.



Fig. 10. 3-day backtrajectory footprints for IESM, Philippines for September, October, November and December 2013.
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The green stars indicate 0e30% confidence in the fire hotspot data;
the yellow stars depict 30e80% confidence; while the red stars
represent more than 80% confidence (Justice et al., 2011). This still
needs to be further quantified though, and in this study, only a
qualitative treatment was done.

At the IESMsite, September is generally still partof the southwest
monsoon season, October being a monsoon transition phase and
November to December belong to the northeast monsoon season.
Surrounding the IESM site are several power plants, landfills, dams
(whichmay release CO2 duringoutgassing) (Gu�erin et al., 2006), and
volcanic fields which are all potential sources of carbon dioxide.

Complex terrain also surrounds both sites, making topography
also a factor in CO2 entrainment producing regions with high sur-
face carbon dioxide concentrations.

Depending upon the strength of the monsoon, transboundary
transport is also a factor in the surface CO2 concentration variations.
This is especially evident at the IESM site particularly during
monsoon surges, tropical cyclone enhanced monsoons and ty-
phoons (Typhoon Haiyan occurred in November) as shown in
Fig. 10 for the months of September, October and November. In-
fluences may come from as far as Indonesia and China.
5. Conclusion and Recommendations

The contribution of several factors to the surface CO2 concen-
trations was assessed. Using multiple linear regression, air tem-
perature and sea level pressure were the primary meteorological
contributors to surface CO2 variations for both sites. Meteorological
factors are not enough to explain the variations in surface carbon
dioxide. Surface CO2 flux and transboundary transport should also
be considered. In this study, only a qualitative approach was taken
in inferring regions that may influence the measurements. The
footprints only indicate probable locations where CO2 sources may
occur. More has to be done to exactly pinpoint where these carbon
dioxide sources are. Quantifying the contribution of surface CO2
fluxes to the measurements still has to be performed.
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